Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(2): 1611-1620, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38166379

RESUMO

Single-atom catalysts, known for their high activity, have garnered significant interest. Currently, single-atom catalysts were prepared mainly on 2D substrates with random distribution. Here, we report a strategy for preparing arrayed single Pt (Pt1) atoms, which are templated through coordination with phosphotungstic acids (PTA) intercalated inside hexagonally packed silicate nanochannels for a high single Pt-atom loading of ca. 3.0 wt %. X-ray absorption spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy, in conjunction with the density-functional theory calculation, collectively indicate that the Pt single atoms are stabilized via a four-oxygen coordination on the PTA within the nanochannels' inner walls. The critical reduction in the Pt-adsorption energy to nearly the cohesive energy of Pt clustering is attributed to the interaction between PTA and the silicate substrate. Consequently, the transition from single-atom dispersion to clustering of Pt atoms can be controlled by adjusting the number density of PTA intercalated within the silicate nanochannels, specifically when the number ratio of Pt atoms to PTA changes from 3.7 to 18. The 3D organized Pt1-PTA pairs, facilitated by the arrayed silicate nanochannels, demonstrate high and stable efficiency with a hydrogen production rate of ca. 300 mmol/h/gPt─approximately twice that of the best-reported Pt efficiency in polyoxometalate-based photocatalytic systems.

2.
Mater Horiz ; 9(9): 2433-2442, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35848594

RESUMO

Two-dimensional (2D) all-inorganic Ruddlesden-Popper (RP) perovskite Cs7Pb6I19 nanosheets (NSs) were successfully developed for the first time by employing a structural recrystallization process with additional passivation of small organic sulfide molecules. The structure of Cs7Pb6I19 NSs is confirmed by powder X-ray diffraction measurements, atomically-resolved STEM measurements and atomic force microscopy (AFM) studies. Cs7Pb6I19 NSs with a specific n value of 6 exhibits unique absorption and emission spectra with intense excitons at 560 nm due to quantum confinement effects in 2D perovskite slabs. The formation mechanisms of 2D Cs7Pb6I19 NSs and 3D γ-CsPbI3 phases were investigated by in situ photoluminescence (PL) spectroscopy and the activation energies of their formation reactions were calculated to be 151 kJ mol-1 and 95.3 kJ mol-1, respectively. The phase stability of 2D Cs7Pb6I19 NSs can be maintained at temperatures below 14 °C for more than 4 weeks. The overall results indicate that 2D Cs7Pb6I19 NSs demonstrate unique optical properties and structural stability compared with other 3D perovskite materials. We have opened a new path to the future discovery of 2D perovskite structures with metastable phases by using this recrystallization method and the assistance of sulfur-derived organic molecules.

3.
Phys Chem Chem Phys ; 23(38): 21748-21756, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34549758

RESUMO

A recent report on the azo coupling of 4-nitrobenzo-15-crown-ether (4NB15C) and 4-nitrothiophenol (4NTP) indicated that the reaction barrier could be reduced greatly with surface plasmonic effects on silver dendritic nanostructures in aqueous solution. Accordingly, an azo coupling reaction mechanism was proposed based on one or two SERS peaks. Toward a profound understanding of this azo coupling reaction mechanism, it is crucial to scrutinize the origin of the full SERS spectrum. Here, we construct a molecular model consisting of 4NTP and 4NB15C on an Ag7 cluster that simulates a silver dendritic nanostructure, and investigate the SERS spectra of the azo coupling of these two molecules. We propose five different adsorption sites and 13 different orientations of 4NTP on the Ag7 cluster and optimize the geometries of the five configurations. With each optimized configuration of 4NTP adsorbed on Ag7, we further consider the azo coupling product with a 4NB15C molecule and simulate the corresponding Raman spectra. Comparing the measured Raman spectra and model analysis, we conclude that the azo coupling reaction depends decisively on a parallel molecular orientation of the adsorbed 4NTP relative to the facets of Ag7, the orientation of which further directs the subsequent reaction for the product of 4NB15C-4NTP.

4.
J Phys Chem Lett ; 12(33): 8121-8128, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34410136

RESUMO

Nitrate (NO3-) reduction reaction (NtRR) is considered as a green alternative method for the conventional method of NH3 synthesis (Haber-Bosch process), which is known as a high energy consuming and large CO2 emitting process. Herein, the copper nanodendrites (Cu NDs) grown along with the {200} facet as an efficient NtRR catalyst have been successfully fabricated and investigated. It exhibited high Faradaic efficiency of 97% at low potential (-0.3 V vs RHE). Furthermore, the 15NO3- isotope labeling method was utilized to confirm the formation of NH3. Both experimental and theoretical studies showed that NtRR on the Cu metal nanostructure is a facet dependent process. Dissociation of NO bonding is supposed to be the rate-determining step as NtRR is a spontaneously reductive and protonation process for all the different facets of Cu. Density functional theory (DFT) calculations revealed that Cu{200} and Cu{220} offer lower activation energy for dissociation of NO compared to that of Cu{111}.

5.
ACS Appl Mater Interfaces ; 12(23): 25853-25860, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32406673

RESUMO

Intensive energy demand urges state-of-the-art rechargeable batteries. Rechargeable aluminum-ion batteries (AIBs) are promising candidates with suitable cathode materials. Owing to high abundance of carbon, hydrogen, and oxygen and rich chemistry of organics (structural diversity and flexibility), small organic molecules are good choices as the electrode materials for AIB. Herein, a series of small-molecule quinone derivatives (SMQD) as cathode materials for AIB were investigated. Nonetheless, dissolution of small organic molecules into liquid electrolytes remains a fundamental challenge. To nullify the dissolution problem effectively, 1,4-benzoquinone was integrated with four bulky phthalimide groups to form 2,3,5,6-tetraphthalimido-1,4-benzoquinone (TPB) as the cathode materials and assembled to be the AI/TPB cell. As a result, the Al/TPB cell delivered capacity as high as 175 mA h/g over 250 cycles in the urea electrolyte system. Theoretical studies have also been carried out to reveal and understand the storage mechanism of the TPB electrode.

6.
ACS Appl Mater Interfaces ; 12(2): 2572-2580, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31860265

RESUMO

Recently, aluminum ion batteries (AIBs) have attracted great attention across the globe by virtue of their massive gravimetric and volumetric capacities in addition to their high abundance. Though carbon derivatives are excellent cathodes for AIBs, there is much room for further development. In this study, flexuous graphite (FG) was synthesized by a simple thermal shock treatment, and for the first time, an Al/FG battery was applied as a cathode for AIBs to reveal the real-time intercalation of AlCl4- into FG with high flexibility by using in-situ scanning electron microscope (SEM) measurements exclusively. Similarly, in-situ X-ray diffraction (XRD) and in-situ Raman techniques have been used to understand the anomalous electrochemical behavior of FG. It was found that FG adopts a unique integrated intercalation-adsorption mechanism where it follows an intercalation mechanism potential above 1.5 V and an adsorption mechanism potential below 1.5 V. This unique integrated intercalation-adsorption mechanism allows FG to exhibit superior properties, like high capacity (≥140 mAh/g), remarkable long-term stability (over 8000 cycles), excellent rate retention (93 mAh/g at 7.5 A/g), and extremely rapid charging and slow discharging.

7.
Sci Rep ; 9(1): 20174, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882825

RESUMO

Under a controlled adsorption environment, L-cysteine molecules can be chemically adsorbed to the dendritic silver (Ag-D) surface by electrochemical methods with different functional groups. It is verified by surface-enhanced Raman spectroscopy that under alkaline conditions (pH = 13.50), the two functional groups of thiol and acid are simultaneously adsorbed on the surface of Ag-D, while NH2 is far from the surface; under acidic conditions (pH = 1.67), adsorption behavior suggests that both NH3+ and COO- are oriented toward the Ag-D surface, and that SH is far from the surface. The structure of L-cysteine adsorption under acidic conditions can be further verified by the addition of an L-cysteine molecule through light-induced coupling reaction to form cystine. Finally, in-situ two-dimensional Raman scattering spectroscopy confirmed the feasibility and uniformity of the coupling reaction.

8.
Phys Chem Chem Phys ; 17(28): 18443-8, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26106968

RESUMO

A novel surface-enhanced Raman scattering (SERS) sensing system which operates by the self-assembly of Ag nanoparticles (AgNPs) onto the nanocomposite of AgNPs and graphene oxide (AgNP-GO) in the presence of two complementary DNAs has been developed. In this system, AgNP-GO serves as a SERS-active substrate. The AgNPs with the modification of non-fluorescent 4-mercaptobenzoic acid (4-MBA) act as highly efficient Raman probes for DNA hybridization. When probe DNAs on AgNP-GO are complementary to target DNAs on AgNPs functionalized with 4-MBA, the DNA hybridization occurring directs the self-assembly of AgNPs onto AgNP-GO, leading to the creation of SERS hot spots. Due to the fact that partial 4-MBA molecules are located in the region of the hot spots, their SERS signals are greatly enhanced, indicating successful DNA hybridization. It is noteworthy that the size of AgNPs contributes significantly to the enhancement of SERS activity. The detection limit of the target DNAs at the pM level can be achieved through the self-assembly of large sized AgNPs onto AgNP-GO. More importantly, the AgNP-AgNP-GO system shows reproducible SERS signals in proportion to the logarithm of the target DNA concentrations spanning from 10(-6) to 10(-12) M and the excellent capability for multiplex DNA detection.

9.
Biophys J ; 97(2): 609-17, 2009 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-19619476

RESUMO

With Cd and Zn metal ions removed from the native rabbit-liver metallothionein upon unfolding, Cu-modified metallothioneins (Cu-MTs) were obtained during refolding in solutions containing Cu(I) or Cu(II) ions. X-ray absorption near-edge spectroscopic results confirm the respectively assigned oxidation states of the copper ions in Cu(I)-MT and Cu(II)-MT. Global and local structures of the Cu-MTs were subsequently characterized by anomalous small-angle x-ray scattering (ASAXS) and extended x-ray absorption fine structure. Energy-dependent ASAXS results indicate that the morphology of Cu(II)-MT resembles that of the native MT, whereas Cu(I)-MT forms oligomers with a higher copper content. Both dummy-residue simulation and model-shape fitting of the ASAXS data reveal consistently rodlike morphology for Cu(II)-MT. Clearly identified Cu-S, Cu-O, and Cu-Cu contributions in the extended x-ray absorption fine structure analysis indicate that both Cu(I) and Cu(II) ions are bonded with O and S atoms of nearby amino acids in a four-coordination environment, forming metal clusters smaller than metal thiolate clusters in the native MT. It is demonstrated that a combination of resonant x-ray scattering and x-ray absorption can be particularly useful in revealing complementary global and local structures of metalloproteins due to the atom specific characteristics of the two techniques.


Assuntos
Cobre/química , Cobre/metabolismo , Metalotioneína/química , Metalotioneína/metabolismo , Difração de Raios X , Absorção , Animais , Apoproteínas/química , Apoproteínas/metabolismo , Modelos Moleculares , Oxirredução , Conformação Proteica , Desnaturação Proteica , Renaturação Proteica , Coelhos , Espalhamento a Baixo Ângulo , Soluções
10.
Biophys J ; 94(12): 4828-36, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18326641

RESUMO

Equilibrium unfolding behaviors of cytochrome c and lysozyme induced by the presence of urea (0-10 M) as well as changes in temperature (295-363 K) or pH (1.8-7) are examined via small-angle x-ray scattering and spectroscopic techniques, including circular dichroism and optical absorption. Denaturant and temperature effects are incorporated into the free energy expression for a general multigroup unfolding process. Results indicate that there are at least four unfolding groups in the temperature-, urea-, or pH-induced unfolding of cytochrome c: two of these are related to the prosthetic heme group, and the other two correspond, respectively, to the unfolding of alpha-helices and global changes in protein morphology that are largely unaccounted for by the first two groups. In contrast, the unfolding of lysozyme approximately follows a simple one-group process. A modified mean-field Ising model is adopted for a coherent description of the unfolding behaviors observed. Thermodynamic parameters extracted from simple denaturing processes, on the basis of the Ising model, can closely predict unfolding behaviors of the proteins in compounded denaturing environments.


Assuntos
Cristalografia/métodos , Citocromos c/química , Citocromos c/ultraestrutura , Modelos Químicos , Modelos Moleculares , Muramidase/química , Muramidase/ultraestrutura , Simulação por Computador , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína
11.
J Phys Chem A ; 111(38): 9286-90, 2007 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-17696324

RESUMO

The local and global structural changes of cytochrome c induced by urea in aqueous solution have been studied using X-ray absorption spectroscopy (XAS) and small-angle X-ray scattering (SAXS). According to the XAS result, both the native (folded) protein and the unfolded protein exhibit the same preedge features taken at Fe K-edge, indicating that the Fe(III) in the heme group of the protein maintains a six-coordinated local structure in both the folded and unfolded states. Furthermore, the discernible differences in the X-ray absorption near-edge structure (XANES) of these two states are attributed to a possible spin transition of the Fe(III) from a low-spin state to a high-spin state during the unfolding process. The perseverance of six-coordination and the spin transition of the iron are reconciled by a proposed ligand exchange, with urea and water molecules replacing the methionine-80 and histidine-18 axial ligands, respectively. The SAXS result reveals a significant morphology change of cytochrome c from a globular shape of a radius of gyration R(g) = 12.8 A of the native protein to an elongated ellipsoid shape of R(g) = 29.7 A for the unfolded protein in the presence of concentrated urea. The extended X-ray absorption fine structure (EXAFS) data unveil the coordination geometries of Fe(III) in both the folded and unfolded state of cytochrome c. An initial spin transition of Fe(III) followed by an axial ligand exchange, accompanied by the change in the global envelope, is proposed for what happened in the protein unfolding process of cytochrome c.


Assuntos
Citocromos c/química , Ureia/química , Água/química , Modelos Moleculares , Desnaturação Proteica , Dobramento de Proteína , Soluções/química , Espectrometria por Raios X
12.
J Synchrotron Radiat ; 14(Pt 4): 320-5, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17587656

RESUMO

Using a superconducting-wavelength-shifter X-ray source with a photon flux density of 10(11)-10(13) photons s(-1) mrad(-1) (0.1% bandwidth)(-1) (200 mA)(-1) in the energy range 5-35 keV, three hard X-ray beamlines, BL01A, BL01B and BL01C, have been designed and constructed at the 1.5 GeV storage ring of the National Synchrotron Radiation Research Center (NSRRC). These have been designed for structure-related research using X-ray imaging, absorption, scattering and diffraction. The branch beamline BL01A, which has an unmonochromatized beam, is suitable for phase-contrast X-ray imaging with a spatial resolution of 1 microm and an imaging efficiency of one frame per 10 ms. The main beamline BL01B has 1:1 beam focusing and a medium energy resolution of approximately 10(-3). It has been designed for small-angle X-ray scattering and transmission X-ray microscopy, used, respectively, in anomalous scattering and nanophase-contrast imaging with 30 nm spatial resolution. Finally, the branch beamline BL01C, which features collimating and focusing mirrors and a double-crystal monochromator for a high energy resolution of approximately 10(-4), has been designed for X-ray absorption spectroscopy and high-resolution powder X-ray diffraction. These instruments, providing complementary tools for studying multiphase structures, have opened up a new research trend of integrated structural study at the NSRRC, especially in biology and materials. Examples illustrating the performances of the beamlines and the instruments installed are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...